Học sâu dựa trên mạng nơ-ron nhân tạo (Phần III)
“Hãy sống như thể ngày mai bạn sẽ chết. Hãy học như thể bạn sẽ sống mãi mãi.”
― Mahatma Gandhi
Thời đại tứ tư (The Fourth Age)
Theo Byron Reese [1], loài người đã trải qua ba thời đại và đang tiến vào thời đại thứ 4.
Thời đại thứ ba (The Third Age) bắt đầu cách đây ~5.000 năm khi chúng ta phát minh ra chữ viết.
Thời đại thứ tư (The Fourth Age) bắt đầu từ hiện tại dựa trên sự kết hợp hai công nghệ kỹ thuật số đột phá là AI và rô-bốt, trong đó AI là chủ đạo.
Kinh tế Trí tuệ nhân tạo
Dự đoán (prediction) là đầu vào cơ bản cho việc ra quyết định (decision-making). Hầu hết chúng ta ai cũng thực hiện dự đoán trước khi ra quyết định, ví dụ như quyết định đầu tư tài chính vào một hàng hoá và dịch vụ nào đó thì dự đoán xem hàng hoá và dịch vụ đó biến động giá như thế nào trong ngắn và dài hạn, quyết định nộp đơn xét tuyển vào một đại học thì dự đoán khả năng đậu vào trường đó là bao nhiêu, quyết định tích trữ bia phục vụ cho các ngày tết thì dự đoán nhu cầu bia vào các ngày tết sẽ tăng như thế nào, . . . Dự đoán là quá trình điền khuyết các thông tin còn thiếu, bằng cách dựa vào các dữ liệu đã có để suy luận ra thông tin cần có.
Theo một báo cáo nghiên cứu của PwC [2], trí tuệ nhân tạo có tiềm năng chuyển đổi năng suất lao động và GDP toàn cầu. Dự báo đến năm 2030, các sản phẩm được tăng cường trí tuệ nhân tạo đóng góp 45% sản lượng, qui đổi tương đương 15.7 nghìn tỷ USD, kinh tế toàn cầu. Các công nghệ dựa trên trí tuệ nhân tạo sẽ thay thế nhiều công việc hiện nay đang được đảm nhiệm bởi con người, với dự báo là máy sẽ thay con người khoảng 700 triệu việc làm [2]. Tuy nhiên, trí tuệ nhân tạo cũng sẽ tạo ra nhiều việc làm mới. Thật khó dự đoán số lượng việc làm mới do các công nghệ dựa AI mang lại là bao nhiêu, nhưng khi chúng ta bước vào nền kinh tế AI, khả năng số lượng việc làm mới yêu cầu các kỹ năng AI là rất lớn.
Công nghiệp 4.0
Công nghiệp 4.0 với nền sản xuất dựa trên các hệ thống kết nối thực-ảo (Cyber-Physical Systems – CPS) bắt đầu từ giai đoạn hiện nay. CPS là các hệ thống thông minh bao gồm các mạng lưới tương tác giữa các thành phần vật lý (thật) và tính toán (ảo), trong đó các thành phần tính toán được tăng cường trí tuệ nhân tạo, có khả năng tự nhận thức và tương tác trực tiếp với nhau (machine-to-machine – M2M) hoặc tương tác với con người (Human-Computer Interactiom- HCI) một cách tự động. Công nghiệp 4.0 dẫn đến vạn vật thông minh, từ đồ gia dụng thông minh, vận tải thông minh, dịch vụ thông minh, nhà máy thông minh, thành phố thông minh đến quốc gia thông minh. Chúng ta đang chứng kiến quá trình dịch chuyển môi trường kinh tế xã hội dần đến môi trường thông minh dựa trên Internet vạn vật (Internet of Things – IoT) và dịch vụ; trong môi trường thông minh đó, con người, máy móc và sản phẩm (hàng hoá và dịch vụ) có thể “nói chuyện” với nhau được.
Phần kết
“Trí tuệ nhân tạo là công nghệ quan trọng nhất trong một hoặc hai thập niên tới. Nó sẽ chuyển đổi hoàn toàn nền kinh tế và xã hội chúng ta theo nhiều cách. Sẽ là sai lầm lớn nếu lãnh đạo quốc gia không coi trọng nó.”
― Erik Brynjolfsson
Trí tuệ nhân tạo được đánh giá cao là sẽ tạo ra sự chuyển đổi hoàn toàn nền kinh tế và xã hội của chúng ta. Giáo sư Erik Brynjolfsson, điều hành chương trình “Sáng kiến cho Nền kinh tế số” của MIT phát biểu rằng “AI là công nghệ quan trọng nhất trong một hoặc hai thập niên tới. Nó sẽ chuyển đổi hoàn toàn nền kinh tế và xã hội chúng ta theo nhiều cách. Sẽ là sai lầm lớn nếu lãnh đạo quốc gia không coi trọng nó.” Google đã thay đổi chiến lược từ “công nghệ di động trước tiên” (moble-first) sang “AI trước tiên” (AI-first). Các công ty công nghệ lớn đều đang đầu tư một lượng tài chính khổng lồ vào phát triển AI. Đầu tư mạo hiểm vào các công ty khởi nghiệp AI ước tính hơn 5.5 tỷ USD chỉ riêng năm 2017.
Ở bình diện quốc gia, nhiều nước công nghiệp phát triển cũng đã có các chính sách và kế hoạch có tầm nhìn dài hạn, đặc biệt là Trung Quốc. Quốc vụ viện nước này đã phê duyệt kế hoạch đưa Trung Quốc trở thành quốc gia dẫn đầu trong sản xuất và ứng dụng AI vào năm 2030. Tổng thống Putin cũng phát biểu rằng “Trí truệ nhân tạo là tương lai, không chỉ đối với nước Nga mà cả nhân loại. Nó mang đến các cơ hội khổng lồ, nhưng cũng mang đến các đe doạ khó dự đoán. Bất kì ai dẫn đầu lĩnh vực này đều sẽ thống lĩnh thế giới.” Thủ tướng Canada cũng nói rằng “Chúng tôi đang đầu tư rất lớn vào AI”. Trong diễn từ gần đây, Tổng thống Pháp cũng đã trình bày chiến lược quốc gia cho phát triển AI với gói ngân sách 1.85 tỉ USD trong năm năm. Liên minh Châu Âu ước tính chi ngân sách 34 tỉ USD, cả khu vực công lẫn tư, đầu tư vào AI giai đoạn 2014-2020
Dự đoán tổng sản lượng kinh tế dựa trên AI năm 2030 là 15.7 nghìn tỷ USD, trong đó Trung Quốc và Mỹ đóng góp 10 nghìn tỷ USD. Và khi đó chúng ta hoàn toàn sống trong nền kinh tế AI. Như vậy, việc AI sẽ thay đổi hoàn toàn nền kinh tế và xã hội chúng ta không phải là viễn tưởng, mà thực tiễn đã và đang chứng minh công nghệ dựa trên AI đang phát triển nhanh như vũ bão và đang bắt đầu thâm nhập vào hầu hết các “ngõ ngách” của các nền kinh tế và xã hội toàn cầu; nhiều chính phủ đã chuyển hướng chiến lược quốc gia vào AI với nguồn ngân sách đầu tư rất lớn; đầu tư tư nhân vào AI đang tăng trưởng với cấp số mũ.
NewAI tập hợp những chuyên gia có trình độ chuyên môn cao về AI. Chương trình giảng dạy của chúng tôi có nội dung hiện đại và được cập nhật song hành cùng với những phát minh mới nhất trong lĩnh vực AI. Tài liệu và học liệu học tập được chọn lọc kỹ, có tham khảo các trung tâm đào tạo AI uy tín nhất hiện nay trên thế giới. Với chương trình này, chúng tôi mong muốn góp phần vào việc kiến tạo một xã hội Việt Nam phồn thịnh với nền kinh tế có sức cạnh tranh cao trong thời đại trí tuệ nhân tạo.
Học liệu
Lý thuyết
- Cơ bản về học sâu:
- Mô hình tuyến tính: Hồi qui tuyến tính và Hồi qui logistic
- Các giải thuật huấn luyện mạng nơ-ron
- Hồi qui softmax
- Đạo hàm và Đồ thị tính toán
- Một số hàm kích hoạt
- Mạng nơ-ron truyền thẳng (Feed-forward Neural Networks)
- Giải thuật lan truyền ngược (Backpropagation)
- Véc-tơ hóa và cơ chế broacasting
- Jupyter Notebook
- PyTorch và TensorFlow
- Chuẩn hóa dữ liệu
- Quá khớp (Overfitting) và chỉnh hoá
- Khởi tạo tham số
- Mạng Nơ-ron tích chập (Convolutional Neural Networks – CNN)
- Giới thiệu CNN
- Phép toán tích chập
- Filter, trượt (stride) và đệm (padding)
- Tích chập với đầu vào nhiều kênh
- Tại sao cần tích chập
- Tầng pooling
- Các mạng CNN kinh điển
- Mạng ResNet và Inception
- Học chuyển giao (transfer learning)
- Xây dựng tập huấn luyện
- One-shot learning
- Một số ví dụ: Phát hiện đối tượng, nhận dạng khuôn mặt, phân loại đối tượng
- Mạng Nơ-ron hồi qui (Recurrent Neural Networks – RNN)
- Giới thiệu mạng RNN
- Mô hình sequence-to-sequence
- Backpropagation through time
- Gated recurrent unit
- Long-short term memory
- Mạng RNN hai hướng
- Mạng RNN sâu
- Mô hình ngôn ngữ và tạo sinh chuỗi
- Cơ chế chú ý
- Một số ví dụ xử lý ngôn ngữ tự nhiên: POS tagging, NER, Speech Recognition, Machine Translation, Question Answering, Sentiment Analysis
Học bằng các dự án thực tế trong Xử lý ngôn ngữ tự nhiên, Thị giác máy tính, nhận dạng và tổng hợp tiếng nói.
Công cụ
- Pytorch
- Jupyter Notebook
- Matplotlib
- Pandas
Ngôn ngữ lập trình
- Python
Sách
- Kevin Murphy (2012), Machine Learning: a Probabilistic Perspective, MIT, Press.
- Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016), Deep Learning, MIT Press.
- Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2017), The Elements of Statistical Learning, Springer.
- Yoav Goldberg (2018). Neural Network Methods for Natural Language Processing. MIT Press.
- Khan, Salman, Hossein Rahmani, Syed Afaq Ali Shah, and Mohammed Bennamoun (2018). A Guide to Convolutional Neural Networks
for Computer Vision. Synthesis Lectures on Computer Vision 8, no. 1 (2018): 1-207.
Bài giảng tham khảo
- http://cs231n.stanford.edu/
- http://cs224d.stanford.edu/
- http://cs229.stanford.edu/